Parameter Expanded Variational Bayesian Methods
نویسندگان
چکیده
Bayesian inference has become increasingly important in statistical machine learning. Exact Bayesian calculations are often not feasible in practice, however. A number of approximate Bayesian methods have been proposed to make such calculations practical, among them the variational Bayesian (VB) approach. The VB approach, while useful, can nevertheless suffer from slow convergence to the approximate solution. To address this problem, we propose Parameter-eXpanded Variational Bayesian (PX-VB) methods to speed up VB. The new algorithm is inspired by parameter-expanded expectation maximization (PX-EM) and parameterexpanded data augmentation (PX-DA). Similar to PX-EM and -DA, PX-VB expands a model with auxiliary variables to reduce the coupling between variables in the original model. We analyze the convergence rates of VB and PX-VB and demonstrate the superior convergence rates of PX-VB in variational probit regression and automatic relevance determination.
منابع مشابه
Probabilistic Models for Common Spatial Patterns: Parameter-Expanded EM and Variational Baye
Common spatial patterns (CSP) is a popular feature extraction method for discriminating between positive and negative classes in electroencephalography (EEG) data. Two probabilistic models for CSP were recently developed: probabilistic CSP (PCSP), which is trained by expectation maximization (EM), and variational Bayesian CSP (VBCSP) which is learned by variational approximation. Parameter expa...
متن کاملProbabilistic Models for Common Spatial Patterns: Parameter-Expanded EM and Variational Bayes
Common spatial patterns (CSP) is a popular feature extraction method for discriminating between positive and negative classes in electroencephalography (EEG) data. Two probabilistic models for CSP were recently developed: probabilistic CSP (PCSP), which is trained by expectation maximization (EM), and variational Bayesian CSP (VBCSP) which is learned by variational approximation. Parameter expa...
متن کاملFrequentist Consistency of Variational Bayes
A key challenge for modern Bayesian statistics is how to perform scalable inference of posterior distributions. To address this challenge, variational Bayes (vb) methods have emerged as a popular alternative to the classical Markov chain Monte Carlo (mcmc) methods. vb methods tend to be faster while achieving comparable predictive performance. However, there are few theoretical results around v...
متن کاملParameter Estimation for the Latent Dirichlet Allocation
We review three algorithms for parameter estimation of the Latent Dirichlet Allocation model: batch variational Bayesian inference, online variational Bayesian inference and inference using collapsed Gibbs sampling. We experimentally compare their time complexity and performance. We find that the online variational Bayesian inference converges faster than the other two inference techniques, wit...
متن کاملLatent Dirichlet Bayesian Co-Clustering
Co-clustering has emerged as an important technique for mining contingency data matrices. However, almost all existing coclustering algorithms are hard partitioning, assigning each row and column of the data matrix to one cluster. Recently a Bayesian co-clustering approach has been proposed which allows a probability distribution membership in row and column clusters. The approach uses variatio...
متن کامل